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Introductory Methodology: At the outset of the statistical post processing effort in 
HIWPP, the focus was on combining a few high-resolution deterministic weather models 
to obtain a skillful forecast result for 2m temperature, 10m winds, 500mb geopotential 
height, and 6 hour accumulated precipitation. In addition to creating a skillful forecast for 
these variables the forecast probability distribution was desired, such as one may get from 
an ensemble of forecast models.  
 
We first considered the method for combining the models to arrive at a single forecast 
result. The choice was made to weight the models at every grid point, based on recent 
skill, to get an average. To do this, we analyzed the recent performance of each model 
relative to the GFS analysis for T2m, U/V10m, and Z500 and relative to CMORPH 
analysis for precipitation. Determining the amount of recent historical training data that is 
necessary to evaluate each model’s relative performance was the first step in the process. 
Figure 1 shows the improvement in MAE (bias removed from each model) for various 
lengths of training data for 2m Temperature (similar curves for other variables). The 
optimal training period chosen for further work is 60 half days/ 30 days since it is the 
approximate amount where the MAE improvement is best.  
 

 
Figure 1: Reduction in MAE for various lengths of training data. 2m Temperature height using weighted 
model average VERSUS arithmetic average where weight is determined to be inversely proportional to 
MAE during training period.  

 
In order to determine the probability distribution in the absence of an ensemble, the 
training data is used again. Once the weight of the models at each grid point is 
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determined, the weighted average forecast is produced in addition to the weighted 
hindcast of the training period. Under the assumption that the probability distribution of 
the forecast should be equal to the distribution of the training period, the distribution of 
the hindcast errors is determined. In the preliminary analyses, the hindcast error 
distributions were investigated for the distribution shape. As shown in Figure 2, the 
distribution of the actual hindcast errors in wind (similar for Temperature and Z500) is 
approximately a normal distribution; therefore the choice was made to represent the 
probability distributions as normal, characterized by the standard deviation of error in the 
training data. 
 

 
Figure 2: Histogram of sample hindcast of wind error used to determine shape of error distribution 

Probability distribution for precipitation is approached in a different manner since the 
training data are generally sparse. The quantitative precipitation forecast (QPF) is 
calculated similarly to other variables (models weighted based on recent skill) and this 
QPF is used in producing a probability. Guidance for the probability was taken from the 
‘Probabilistic Quantitative Precipitation Forecasts Product/ Service Description 
Document (PDD)’ (http://products.weather.gov/PDD/PDD-POE.pdf) and ‘An 
Experiment in Probabilistic Quantitative Precipitation Forecasting’ by Steve Amburn and 
James Frederick of the National Weather Service Forecast Office in Tulsa, Oklahoma 
(http://www.nws.noaa.gov/ost/nfuse/PQPF_AMSProbConf2006.pdf). We have chosen to 
represent the probability distribution with an exponential probability of exceedance 
(POE) of a selected rainfall amount (x). In Amburn and Frederick, the POE(x) for any 
point is given by:  

 
where µ is the QPF, graphically shown in Figure 3. 

http://products.weather.gov/PDD/PDD-POE.pdf
http://www.nws.noaa.gov/ost/nfuse/PQPF_AMSProbConf2006.pdf


Figure 3: Probability of exceedance of Rainfall Amount 

 
Production Code: In the final quarter of the calendar year of 2014, the HIWPP statistical 
post-processing task delivered the Production Version 1.0 of Statistical Post Processing 
(V1.0_SPP). Based on the results of analysis performed on surface temperature and wind 
(T2m and U/V 10m), geopotential height at 500mb (Z500), and 6 hour accumulated 
precipitation with two models, V1.0_SPP includes model weighting at each grid point 
that is inversely proportional to the Mean Absolute Error at the point in 30 days of 
training data. The other major result desired from the statistical post-processing task is a 
probability distribution of the forecast. To this end, also included in the output of the 
production code is the standard deviation of the weighted forecast error in the training 
period at each grid point for T2m, U/V10m, and Z500, variables currently assumed to be 
normally distributed. For precipitation, the probability of exceeding 1mm, 5mm and 
10mm of precipitation are provided, based on an exponential distribution using the 
reciprocal of the weighted mean quantitative precipitation forecast (QPF) in the exponent. 
The performance of the weighted mean versus the arithmetic mean of the models for the 
period from December 24, 2014 thru January 7, 2015 is shown below in Figure 4. These 
are consistent with the results from sample data analyzed prior to the development of the 
production code and are therefore considered representative of the general performance 
of the weighting algorithm.   
 



Figure 4: Weighted Mean Forecast Performance 

The production code was monitored for stability and additional code was added to 
perform conversions of output from netCDF to GRIB1 for verification, and to GRIB 2 for 
users who prefer it.  
 
In the latter portion of Q4 calendar 2014, implementation and testing of the year 2 
concept of improving the forecast with field alignment began. The testing has included 
and will continue to include application of the field alignment algorithm upon the 
weighted and raw forecasts with various lengths of training cycles to determine the best 
application of the method. Testing will be complete by end of Q1 calendar 2015. 
 
 
New Direction: After developing the methodology and production code for post 
processing, the HIWPP post processing task has had a change in trajectory from 
including only a very few high-resolution deterministic models to using actual ensembles 
of GEFS (20 members) and FIM ensemble (10 members). The purpose of the change in 
direction is to use the statistical post-processing code to facilitate answering the question: 
‘Can combining FIM with GEFS members add value to the overall ensemble 
performance?’ To extend the HIWPP statistical post processing to ensembles of 20 or 
more members, additional code development had to take place. Specifically, the purpose 
of additional development was on reducing the memory burden of carrying the statistical 
basis for weighting all ensemble members. 

Improved code was used to process data from a six-month long (June-July-August, 
November-December, 2014 and January, 2015) retro run, including the experimental 
version of GEFS and the matching configuration of FIM ensemble. The experimental 
version of GEFS represents the next implementation of the GEFS and it includes use of 
high-resolution GFS and improved initial conditions, higher in both spatial and temporal 
resolution and forecasts out to sixteen days. Ten FIM ensemble members were run using 
ten different initial conditions provided by GEFS and with the matching physics, spatial 
and temporal resolution. The idea was to compare performance of an ensemble that 



consists of ten FIM members and ten GEFS members to performance of twenty GEFS 
members. The initial result was simply making an ensemble mean for the 20-member 
GEFS ensemble and making the ensemble mean from 10 FIM members plus 10 GEFS 
members. An example of preliminary results is presented in the figures below. Figures 5 
and 6 illustrate a ‘die-off’ diagram showing change in the ensemble mean 500mb 
anomaly correlation for two ensembles with the lead-time and for global domain and for 
Northern and Southern Hemispheres. It can be seen that combining two different 
dynamic cores (GEFS and FIM) into the ensemble resulted in an improvement of 500mb 
ensemble mean anomaly correlation for the overall global domain and longer lead-times. 
Also, Figures 4 and 5 show that most of the improvement is coming from the Southern 
Hemisphere performance. 

 

  

Figure 5: Mean Anomaly correlation versus forecast lead time for Global domain. Ensemble Mean- GEFS alone 
(red) and Combined FIM/GEFS (blue) 

  



 

 

Figure 6: Ensemble Mean Anomaly Correlation with lead time, Northern and Southern Hemispheres, 
GEFS ensemble (red) and the mixed GEFS/FIM ensemble (blue). 
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Continued Ensemble Evaluation: The post processing effort proceeded to expand the 
statistics methodology of combining 10 FIM ensemble members with 10 GEFS members 
and compare the result to 20 GEFS members alone. Again, the data for the experiments 
included 2014 summer season (Jun, July, August) and winter season (November, 
December, January).  

We evaluated ensemble statistics such as spread/error ratio and Continuous Rank 
Probability Skill Score (CRPSS). Figure 6 shows CRPSS for 2m temperature and 850 mb 
temperatures for summer months (June-July-August) for Southern and Northern 
Hemisphere. Combining FIM ensemble members with GEFS members resulted in 
statistically significant increase in skill for 2m temperature and 850 mb temperature for 
Northern Hemisphere.  Combining FIM members with GEFS members also produced 
slight improvement in the Southern Hemisphere (Fig. 7).  

 

Figure 7: CRPSS for 2m temperature and 850mb temperature for warm season and both Northern and 
Southern Hemisphere. 

Figure 8 shows 2m temperature spread and Root Mean Squared Error for the two 
ensembles and for both Southern and Northern Hemisphere. We can see that in the 
Northern Hemisphere GEFS ensemble is characterized with statistically significantly 
smaller spread for all lead times and significantly higher error at shorter lead times as 



compared to the ensemble that combines GEFS and FIM ensemble members. In Southern 
Hemisphere the ensemble with combined FIM and GEFS members resulted in slightly 
improved spread for linger lead times. 

 

Figure 8. Spread and Root Mean Squared Error comparison for 2m temperature for the two ensembles 
and for both Northern and Southern Hemisphere. 

With the positive result exhibited from combining the FIM ensemble with 10 of the 
GEFS members to make a new ensemble mean, the methodology developed initially for 
the fewer members, weighting based on skill in 30 days training, was applied to attempt 
to obtain an even better result. Several varieties of weighting were attempted; all of the 
results were very similar. The varieties include the original weighting developed- each 
grid point weighted inversely proportional to its MAE in the training period; weighting 
proportional to each point’s correlation in time in the training set; and finally weighting 
each member by its mean anomaly correlations in the training period. In Figure 9, an 
example of these post-processing results is included (Note: since a portion of the time 
period is used for training, the results for ensemble means shown in Figure 8 differ from 
Figure 5). 



 
Figure 9: As in Figure 1, added the post processed example (orange). 

The results of the experiments exhibit the benefit of combining the FIM ensemble with 
the GEFS ensemble and show that the ensemble variety is the source of the benefit.  

 
The post processing continued to focus on mixed model ensemble including GEFS and 
FIM dynamic cores. Previous experiments included combining the two dynamic cores 
with perturbed initial conditions but exactly the same physics. Testing use of Grell-
Freitas (GF) convective parameterization within FIM showed promising results. A 
decision was made to include variations in physics for FIM members. In addition to 
initial conditions perturbations, five out of 10 FIM members included the GF convective 
scheme. In agreement with our EMC colleagues, a decision was made to perform a full 
year of 2014 retro run with the new FIM ensemble configuration. The year-long retro run 
was completed and some of the data analyses were performed. Figure 10 compares 
500mb anomaly correlation results between GEFS, the old GEFS+FIM ensembles, and 
the new GEFS+FIM ensemble on the global domain and for summer of 2014. We can see 
that adding variation in convective treatment resulted in a positive impact on the global 
domain.  
 



 
 
Figure 10. 500mb Anomaly Correlation for GEFS and old and new version of FIM ensembles over the 
global domain and for the summer of 2014. 

 
By performing the same analysis for the  Northern and Southern Hemispheres we can see 
that the majority of positive impact is associated with an improvement in the Southern 
Hemisphere Figure 11). Similar results were obtained for the month of November (Figure 
12). The analysis for the rest of the retro run is still ongoing. Additional ensemble 
statistics such as skill, spread and error for various variables were also evaluated. An 
example of spread, ensemble mean RMSE, spread/error ratio and CRPSS statistics for 2m 
temperature, Northern Hemisphere, and for the summer period of 2014 is shown in 
Figure 13. We can see that combining FIM members with GEFS resulted in an 
improvement of all of the statistics.  



 
Figure 11. As in Figure 1, except for Northern and Southern Hemisphere domains. 

 

Figure 12. As in Figure 2, except for the month of November 2014. 



 

 
 

Figure 13. Spread and RMSE, spread/error ratio and CRPSS for Summer 2014, Northern Hemisphere and 
for the GEFS vs. FIM ensembles. 

Most recently, the FIM ensemble has been running in real time production and the 
ensemble mean upper air temperature of the combined ensemble and the GEFS alone 
have been made for creating new verification statistics.  Figure 14 shows the upper air 
temperature global Root Mean Square Error for the combined versus the GEFS. This 
plot, based ion a very limited (~2-3 weeks) recent history of forecasts, indicates that the 
results are similar in this statistic, while the combined ensemble has lower error than the 
GEFS alone at several pressure levels.  



 
Figure 14: Real Tim Upper Air Temperature Error, GEFS and combined GEFS FIM ensemble. 
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